Modular Oxidation of Cytosine Modifications and Their Application in Direct and Quantitative Sequencing of 5-Hydroxymethylcytosine.
Xu H., Chen J., Cheng J., Kong L., Chen X., Inoue M., Liu Y., Kriaucionis S., Zhao M., Song C-X.
Selective, efficient, and controllable oxidation of cytosine modifications is valuable for epigenetic analyses, yet only limited progress has been made. Here, we present two modular chemical oxidation reactions: conversion of 5-hydroxymethylcytosine (5hmC) into 5-formylcytosine (5fC) using 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate (ACT+BF4-) and further transformation of 5fC into 5-carboxycytosine (5caC) through Pinnick oxidation. Both reactions are mild and efficient on double-stranded DNA. We integrated these two oxidations with borane reduction to develop chemical-assisted pyridine borane sequencing plus (CAPS+), for direct and quantitative mapping of 5hmC. Compared with CAPS, CAPS+ improved the conversion rate and false-positive rate. We applied CAPS+ to mouse embryonic stem cells, human normal brain, and glioblastoma DNA samples and demonstrated its superior sensitivity in analyzing the hydroxymethylome.