Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A major change in recent years has been the recognition that severe malaria, predominantly caused by Plasmodium falciparum, is a complex multi-system disorder presenting with a range of clinical features. It is becoming apparent that syndromes such as cerebral malaria, which were previously considered relatively clear cut, are not homogenous conditions with a single pathological correlate or pathogenic process. This creates challenges both for elucidating key mechanisms of disease and for identifying suitable targets for adjunctive therapy. The development of severe malaria probably results from a combination of parasite-specific factors, such as adhesion and sequestration in the vasculature and the release of bioactive molecules, together with host inflammatory responses. These include cytokine and chemokine production and cellular infiltrates. This review summarizes progress in several areas presented at a recent meeting.

Original publication




Journal article


Trends Parasitol

Publication Date





597 - 603


Anemia, Animals, Cell Adhesion, Erythrocytes, Female, Humans, Malaria, Cerebral, Malaria, Falciparum, Mice, Plasmodium falciparum, Pregnancy, Pregnancy Complications, Parasitic