Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

To evaluate glucose kinetics in children with falciparum malaria, basal glucose production and gluconeogenesis and an estimate of the flux of the gluconeogenic precursors were measured in Kenyan children with uncomplicated falciparum malaria before (n = 11) and during infusion of alanine (1.5 mg/kg.min; n = 6). Glucose production was measured by [6,6-2H2]glucose, gluconeogenesis by mass isotopomer distribution analysis of glucose labeled by [2-13C]glycerol. Basal plasma glucose concentration ranged from 2.1-5.5 mmol/L, and basal glucose production ranged from 3.3-7.3 mg/kg.min. Glucose production was largely derived from gluconeogenesis (73 +/- 4%; range, 52-93%). During alanine infusion, plasma glucose increased by 0.4 mmol/L (P = 0.03), glucose production increased by 0.8 mg/kg.min (P = 0.02), and gluconeogenesis increased by 0.8 mg/kg.min (P = 0.04). We conclude that glucose production in children with uncomplicated falciparum malaria is largely dependent on gluconeogenesis. However, gluconeogenesis is potentially limited by insufficient precursor supply. These data indicate that in children with falciparum malaria, gluconeogenesis fails to compensate in the presence of decreased glycogen flux to glucose, increasing the risk of hypoglycemia.

Original publication

DOI

10.1210/jcem.82.8.4131

Type

Journal article

Journal

J Clin Endocrinol Metab

Publication Date

08/1997

Volume

82

Pages

2514 - 2521

Keywords

Alanine, Blood Glucose, Child, Child, Preschool, Cytokines, Deuterium, Female, Gluconeogenesis, Glucose, Glycerol, Homeostasis, Humans, Hydrocortisone, Insulin, Kenya, Kinetics, Lactic Acid, Malaria, Falciparum, Male