Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent drug trials in Laos have shown high levels of Plasmodium falciparum resistance to chloroquine, but there are no published data on in vitro antimalarial drug susceptibility. We used the double-site enzyme-linked pLDH immunodetection (DELI) assay to estimate the in vitro antimalarial drug susceptibility of 108 fresh P. falciparum isolates from southern Laos. The geometric mean (95% confidence interval) 50% inhibitory concentration values (nmol/L) were 152.4 (123.8-187.6) for chloroquine, 679.8 (533.8-863.0) for quinine, 45.9 (37.9-55.7) for mefloquine, 5.0 (4.4-6.4) for artesunate, 6.3 (4.5-8.9) for dihydroartemisinin, and 59.1 (46.4-75.3) for lumefantrine. The proportion of isolates defined as resistant were 65%, 40%, and 8% for chloroquine, quinine, and mefloquine, respectively. Of 53 isolates genotyped for the pfcrt T76K chloroquine-resistance mutation, 48 (91%) were mutants. P. falciparum in Laos is multi-drug resistant; antimalarial immunity resulting from the use of ineffective chloroquine before 2005 probably contributes significantly to the therapeutic responses in clinical trials.

Type

Journal article

Journal

Am J Trop Med Hyg

Publication Date

02/2007

Volume

76

Pages

245 - 250

Keywords

Adolescent, Adult, Animals, Antimalarials, Artemisinins, Artesunate, Child, Child, Preschool, Chloroquine, DNA, Protozoan, Drug Resistance, Ethanolamines, Female, Fluorenes, Humans, Inhibitory Concentration 50, Laos, Lumefantrine, Malaria, Falciparum, Male, Mefloquine, Membrane Transport Proteins, Middle Aged, Plasmodium falciparum, Point Mutation, Polymerase Chain Reaction, Protozoan Proteins, Sesquiterpenes