Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The calpain-10 gene (CAPN10) has been associated with type 2 diabetes, but information on molecular and physiological mechanisms explaining this association is limited. Here we addressed this question by studying the role of CAPN10 for phenotypes associated with type 2 diabetes and free fatty acid (FFA) metabolism. Among 395 type 2 diabetic patients and 298 nondiabetic control subjects from Finland, the SNP-43 allele 1 (P = 0.011), SNP-63 allele 2 (P = 0.010), and the haplotype combination SNP-44/43/19/63 1121/1121 (P = 0.028) were associated with type 2 diabetes. The SNP-43 genotypes 11 and 12 were associated with higher fasting insulin and homeostasis model assessment (HOMA) insulin resistance index among control subjects (P = 0.021 and P = 0.0076) and with elevated FFA among both control subjects (P = 0.0040) and type 2 diabetic patients (P = 0.0025). Multiple regression analysis further indicated that SNP-43 is an independent predictor of FFA levels (P = 0.0037). Among 80 genotype discordant sibling pairs, the SNP-43 allele 1 was associated with elevated fasting serum insulin and HOMA index (P = 0.013 and P = 0.0068). None of the four SNPs showed distorted transmission of alleles to patients with type 2 diabetes in a qualitative transmission disequilibrium test, including 108 trios. Because FFA and insulin resistance are known to predict type 2 diabetes, the finding that variation in the CAPN10 gene influences FFA levels and insulin resistance may provide an explanation for how the CAPN10 gene increases susceptibility to type 2 diabetes.

Type

Journal article

Journal

Diabetes

Publication Date

08/2002

Volume

51

Pages

2658 - 2664

Keywords

Alleles, Blood Glucose, Body Constitution, Calpain, Case-Control Studies, Fatty Acids, Nonesterified, Female, Finland, Genetic Variation, Genotype, Haplotypes, Humans, Insulin, Insulin Resistance, Male, Middle Aged