Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundMalaria continues to pose a significant health threat. Rapid identification of malaria infections and the deployment of active surveillance tools are crucial for achieving malaria elimination in regions where malaria is endemic, such as certain areas of Thailand. In this study, an anomaly detection system is introduced as an early warning mechanism for potential malaria outbreaks in countries like Thailand.MethodsUnsupervised clustering-based, and time series-based anomaly detection algorithms are developed and compared to identify abnormal malaria activity in Thailand. Additionally, a user interface tailored for anomaly detection is designed, enabling the Thai malaria surveillance team to utilize these algorithms and visualize regions exhibiting unusual malaria patterns.ResultsNine distinct anomaly detection algorithms we developed. Their efficacy in pinpointing verified outbreaks was assessed using malaria case data from Thailand spanning 2012 to 2022. The historical average threshold-based anomaly detection method triggered three times fewer alerts, while correctly identifying the same number of verified outbreaks when compared to the current method used in Thailand. A limitation of this analysis is the small number of verified outbreaks; further consultation with the Division of Vector Borne Disease could help identify more verified outbreaks. The developed dashboard, designed specifically for anomaly detection, allows disease surveillance professionals to easily identify and visualize unusual malaria activity at a provincial level across Thailand.ConclusionAn enhanced early warning system is proposed to bolster malaria elimination efforts for countries with a similar malaria profile to Thailand. The developed anomaly detection algorithms, after thorough comparison, have been optimized for integration with the current malaria surveillance infrastructure. An anomaly detection dashboard for Thailand is built and supports early detection of abnormal malaria activity. In summary, the proposed early warning system enhances the identification process for provinces at risk of outbreaks and offers easy integration with Thailand's established malaria surveillance framework.

Original publication

DOI

10.1186/s12936-024-04837-x

Type

Journal article

Journal

Malaria journal

Publication Date

01/2024

Volume

23

Addresses

Nuffield Department of Medicine, University of Oxford, Broad St, Oxford, OX13AZ, UK.

Keywords

Humans, Malaria, Cluster Analysis, Disease Outbreaks, Algorithms, Thailand