Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The distinguishing structural feature of immunoglobulin E (IgE), the antibody responsible for allergic hypersensitivity, is the C epsilon 2 domain pair that replaces the hinge region of IgG. The crystal structure of the IgE Fc (constant fragment) at a 2.6-A resolution has revealed these domains. They display a distinctive, disulfide-linked Ig domain interface and are folded back asymmetrically onto the C epsilon 3 and C epsilon 4 domains, which causes an acute bend in the IgE molecule. The structure implies that a substantial conformational change involving C epsilon 2 must accompany binding to the mast cell receptor Fc epsilon RI. This may be the basis of the exceptionally slow dissociation rate of the IgE-Fc epsilon RI complex and, thus, of the ability of IgE to cause persistent allergic sensitization of mast cells.

Original publication




Journal article


Nat Immunol

Publication Date





681 - 686


Carbohydrate Conformation, Crystallography, X-Ray, Dimerization, Humans, Immunoglobulin Constant Regions, Immunoglobulin E, Models, Molecular, Protein Structure, Tertiary, Receptors, IgE