Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although antibody affinity is primarily determined by immunoglobulin variable region structure human IgG antibodies of the four subclasses specific for the same antigen have been shown to differ in their affinity. To explore the influence of the immunoglobulin constant region on functional antibody affinity, a set of V region identical mouse-human chimeric IgG subclasses specific for TAG72 (tumour-associated glycoprotein) were studied. Biomolecular interaction analysis (BIA) was used to determine the binding kinetics of whole IgG subclasses and F(ab')2 fragments. Despite identical V regions, binding kinetics differed for the four subclasses. The apparent dissociation rate constants of the intact immunoglobulins ranked IgG4 < IgG3 < IgG2 < IgG1. In contrast, analysis of the binding characteriztics of the F(ab')2 fragments derived from IgG1, IgG2 and IgG4 revealed identical binding kinetics. The structure of the constant regions of the humanized IgG subclass antibodies clearly influenced functional antibody affinity, as has been described for the murine IgG subclasses. The exact mechanism for this phenomenon remains obscure but such differences should be taken into account when designing or choosing antibodies for therapeutic use.

Type

Journal article

Journal

Immunology

Publication Date

06/1996

Volume

88

Pages

169 - 173

Keywords

Animals, Antibody Affinity, Cell Line, Chimera, Humans, Immunoglobulin Constant Regions, Immunoglobulin Fab Fragments, Immunoglobulin G, Kinetics, Mice