Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ferroquine (FQ; SSR97193), a ferrocene-containing 4-aminoquinoline derivate, has potent in vitro efficacy against chloroquine (CQ)-resistant Plasmodium falciparum and CQ-sensitive P. vivax. In the current study, ex vivo FQ activity was tested in multidrug-resistant P. falciparum and P. vivax field isolates using a schizont maturation assay. Although FQ showed excellent activity against CQ-sensitive and -resistant P. falciparum and P. vivax (median 50% inhibitory concentrations [IC(50)s], 9.6 nM and 18.8 nM, respectively), there was significant cross-susceptibility with the quinoline-based drugs chloroquine, amodiaquine, and piperaquine (for P. falciparum, r = 0.546 to 0.700, P < 0.001; for P. vivax, r = 0.677 to 0.821, P < 0.001). The observed ex vivo cross-susceptibility is likely to reflect similar mechanisms of drug uptake/efflux and modes of drug action of this drug class. However, the potent activity of FQ against resistant isolates of both P. falciparum and P. vivax highlights a promising role for FQ as a lead antimalarial against CQ-resistant Plasmodium and a useful partner drug for artemisinin-based combination therapy.

Original publication




Journal article


Antimicrob Agents Chemother

Publication Date





4461 - 4464


Aminoquinolines, Antimalarials, Chloroquine, Drug Resistance, Ferrous Compounds, Plasmodium falciparum