Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Transition from long-term nonprogressive infection to progressive HIV-1 disease presents an opportunity to investigate pathogenesis in a defined immunogenetic background. We studied a male long-term nonprogressor (LTNP) who remained asymptomatic and viremic and had normal CD4 T-cell counts without antiretroviral therapy for >18 years and then experienced a transition to disease progression. We analyzed the complete HIV-1 genomic RNA sequence from plasma and cellular immune responses to predefined human leukocyte antigen-matched autologous viral peptides spanning the viral genome, before and after progression. Serial viral sequences did not seem attenuated and consistently utilized coreceptor CCR5. LTNP status was associated with elongated V2 domains and broad low-level T-cell immune responses targeting several regions of the viral genome. The transition to progressive disease was associated with the acquisition of viral mutations conferring escape from CD8 T-cell responses. Multiple changes in HIV-1 sequence and loss of immune response over time most likely contributed to the transition from LTNP status to progressive disease. These data are relevant to vaccine design and identification of the correlates of protection from disease progression.

Original publication

DOI

10.1097/QAI.0b013e31816b6abd

Type

Journal article

Journal

J Acquir Immune Defic Syndr

Publication Date

01/06/2008

Volume

48

Pages

119 - 126

Keywords

Acquired Immunodeficiency Syndrome, Amino Acid Sequence, Disease Progression, Epitopes, T-Lymphocyte, HIV-1, HLA Antigens, Humans, Interferon-gamma, Male, Molecular Sequence Data, RNA, Viral, T-Lymphocytes, Cytotoxic