Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The Malayan pit viper, Calloselasma rhodostoma, produces a potent venom toxin, rhodocytin (aggretin) which causes platelet aggregation. Rhodocytin is a ligand for the receptor CLEC-2 on the surface of platelets. The interaction of these two molecules initiates a signaling pathway which results in platelet activation and aggregation. We have previously solved the crystal structures of CLEC-2 and of rhodocytin, and have proposed models by which tetrameric rhodocytin may interact with either two monomers of CLEC-2, or with one or two copies of dimeric CLEC-2. In the current study we use a range of approaches to analyze the molecular interfaces and dynamics involved in the models of the interaction of rhodocytin with either one or two copies of dimeric CLEC-2, and their implications for clustering of CLEC-2 on the platelet surface.

Original publication

DOI

10.3390/toxins3080991

Type

Journal article

Journal

Toxins (Basel)

Volume

3

Pages

991 - 1003

Keywords

CLEC-2, platelets, rhodocytin, thrombosis, Agkistrodon, Algorithms, Animals, Blood Platelets, Lectins, C-Type, Ligands, Platelet Aggregation, Protein Binding, Protein Conformation, Signal Transduction, Viper Venoms