Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RationaleHeterogeneity of the host response within sepsis, acute respiratory distress syndrome (ARDS) and more widely critical illness, limits discovery and targeting of immunomodulatory therapies. Clustering approaches using clinical and circulating biomarkers have defined hyper-inflammatory and hypo-inflammatory subphenotypes in ARDS associated with differential treatment response. It is unknown if similar subphenotypes exist in sepsis populations where leucocyte transcriptomic-defined subphenotypes have been reported.ObjectivesWe investigated whether inflammatory clusters based on cytokine protein abundance were seen in sepsis, and the relationships with previously described transcriptomic subphenotypes.MethodsHierarchical cluster and latent class analysis were applied to an observational study (UK Genomic Advances in Sepsis (GAinS)) (n=124 patients) and two clinical trial datasets (VANISH, n=155 and LeoPARDS, n=484) in which the plasma protein abundance of 65, 21, 11 circulating cytokines, cytokine receptors and regulators were quantified. Clinical features, outcomes, response to trial treatments and assignment to transcriptomic subphenotypes were compared between inflammatory clusters.Measurements and main resultsWe identified two (UK GAinS, VANISH) or three (LeoPARDS) inflammatory clusters. A group with high levels of pro-inflammatory and anti-inflammatory cytokines was seen that was associated with worse organ dysfunction and survival. No interaction between inflammatory clusters and trial treatment response was found. We found variable overlap of inflammatory clusters and leucocyte transcriptomic subphenotypes.ConclusionsThese findings demonstrate that differences in response at the level of cytokine biology show clustering related to severity, but not treatment response, and may provide complementary information to transcriptomic sepsis subphenotypes.Trial registration numberISRCTN20769191, ISRCTN12776039.

Original publication

DOI

10.1136/thorax-2023-220538

Type

Journal article

Journal

Thorax

Publication Date

03/2024

Addresses

Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK d.antcliffe@imperial.ac.uk.