Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Plasmodium falciparum-infected erythrocytes (IRBC) synthesize 3 histidine-rich proteins: HRP-I or the knob-associated HRP, HRP-II and HRP-III or SHARP. In order to distinguish these proteins immunochemically we prepared monoclonal antibodies which react with HRP-I, HRP-II and HRP-III, and rabbit antisera against synthetic peptides derived from the HRP-II and HRP-III sequences. A comparative analysis of diverse P. falciparum parasites was made using these antibodies and immunoprecipitation or Western blotting. HRP-I (Mr 80,000-115,000) was identified in all knob-positive P. falciparum parasites including isolates examined directly from Gambian patients. However, this protein was of lower abundance in these isolates and in 6 knob-positive, culture-adapted parasites compared to Aotus monkey-adapted parasites or culture-adapted parasites studied previously. HRP-II (Mr 60,000-105,000) was identified in all P. falciparum parasites regardless of knob-phenotype, and was recovered from culture supernatants as a secreted water-soluble protein. Within IRBC, HRP-II was found as a complex of several closely spaced bands. Cell surface radio-iodination of IRBC from several isolates and immunoprecipitation with a rabbit antiserum against the HRP-II repeat sequence identified HRP-II as a surface-exposed protein. Like HRP-I, the abundance of HRP-II was lower in the Gambian isolates than with Aotus monkey-adapted parasites studied earlier. Neither HRP-I nor HRP-II were identified in a knob-positive isolate of P. malariae collected from a Gambian patient. Analogues of these HRP were also absent from asexual parasites of diverse primate and murine malaria species screened with this panel of antibodies. HRP-III (Mr 40,000-55,000) was distinguished by its lower apparent size and by specific reaction with rabbit antibody against its 5-mer repeat sequence. HRP-III was of lowest abundance compared with the other two HRP. These antibody reagents and distinguishing properties should prove useful in studies on the separate functions of the 3 P. falciparum HRP.

Type

Journal article

Journal

Parasitology

Publication Date

10/1987

Volume

95 ( Pt 2)

Pages

209 - 227

Keywords

Adult, Animals, Antibodies, Monoclonal, Electrophoresis, Polyacrylamide Gel, Erythrocytes, Female, Fluorescent Antibody Technique, Glycoproteins, Humans, Immune Sera, Immunoassay, Plasmodium falciparum, Plasmodium malariae, Proteins