Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Interleukin-8 (IL8) is believed to play a role in the pathogenesis of bronchiolitis, a common viral disease of infancy, and a recent U.K. family study identified an association between this disease and the IL8-251A allele. In the present study we report data, from a different set of families, which replicate this finding; combined analysis of 194 nuclear families through use of the transmission/disequilibrium test gives P = .001. To explore the underlying genetic cause, we identified nine single-nucleotide polymorphisms (SNPs) in a 7.6-kb segment spanning the IL8 gene and its promoter region and used six of these SNPs to define the haplotypic structure of the IL8 locus. The IL8-251A allele resides on two haplotypes, only one of which is associated with disease, suggesting that this may not be the functional allele. Europeans show an unusual haplotype genealogy that is dominated by two common haplotypes differing at multiple sites, whereas Africans have much greater haplotypic diversity. These marked haplotype-frequency differences give an F(ST) of.25, and, in the European sample, both Tajima's D statistic (D = 2.58, P = .007) and the Hudson/Kreitman/Aguade test (chi(2) = 4.9, P = .03) reject neutral equilibrium, suggesting that selective pressure may have acted on this locus.

Original publication




Journal article


Am J Hum Genet

Publication Date





413 - 419


Africa, Alleles, Animals, Bronchiolitis, Viral, Gene Frequency, Genetic Predisposition to Disease, Genetic Variation, Haplotypes, Humans, Infant, Interleukin-8, Introns, Molecular Sequence Data, Mutation, Pan troglodytes, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, Prospective Studies, Respiratory Syncytial Virus Infections, Respiratory Syncytial Viruses, Selection, Genetic, United Kingdom