Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To investigate the importance of OX40 signals for physiological CD4+ T‐cell responses, an endogenous antigen‐specific population of CD4+ T cells that recognise the 2W1S peptide was assessed and temporal control of OX40 signals was achieved using blocking or agonistic antibodies (Abs) in vivo. Following infection with Listeria monocytogenes expressing 2W1S peptide, OX40 was briefly expressed by the responding 2W1S‐specific CD4+ T cells, but only on a subset that co‐expressed effector cell markers. This population was specifically expanded by Ab‐ligation of OX40 during priming, which also caused skewing of the memory response towards effector memory cells. Strikingly, this greatly enhanced effector response was accompanied by the loss of T follicular helper (TFH) cells and germinal centres. Mice deficient in OX40 and CD30 showed normal generation of TFH cells but impaired numbers of 2W1S‐specific effector cells. OX40 was not expressed by 2W1S‐specific memory cells, although it was rapidly up‐regulated upon challenge whereupon Ab‐ligation of OX40 specifically affected the effector subset. In summary, these data indicate that for CD4+ T cells, OX40 signals are important for generation of effector T cells rather than TFH cells in this response to acute bacterial infection.

Original publication

DOI

10.1002/eji.201344211

Type

Journal article

Journal

European Journal of Immunology

Publisher

Wiley

Publication Date

08/2014

Volume

44

Pages

2437 - 2447