Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Our previous studies have implicated signaling through the tumor necrosis family receptors OX40 and CD30 as critical for maintaining CD4 memory responses. We show that signals through both molecules are also required for CD4 effector-mediated autoimmune tissue damage. Under normal circumstances, male mice deficient in the forkhead transcription factor FoxP3, which lack regulatory CD4 T cells, develop lethal autoimmune disease in the first few weeks of life. However, in the combined absence of OX40 and CD30, FoxP3-deficient mice develop normally and breed successfully. The extensive tissue infiltration and organ destruction characteristic of FoxP3 disease does not appear in these mice, and their mortality is not associated with autoimmunity. Although the absence of OX40 plays the dominant role, FoxP3-deficient mice sufficient in CD30 but deficient in OX40 signals still eventually develop lethal disease. This result was supported by the observation that blocking antibodies to OX40 and CD30 ligands also abrogated disease mediated by FoxP3-deficient T cells. These observations identify OX40 and CD30 signals as essential for the development of clinically relevant CD4-dependent autoimmunity and suggest that combination therapies that abrogate these signals might be used to treat established human autoimmune diseases.

Original publication

DOI

10.1084/jem.20101484

Type

Journal

Journal of Experimental Medicine

Publisher

Rockefeller University Press

Publication Date

01/08/2011

Volume

208

Pages

1579 - 1584