Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background: The antibiotic bedaquiline is a key component of new WHO regimens for drug-resistant tuberculosis; however, predicting bedaquiline resistance from bacterial genotypes remains challenging. We aimed to understand the genetic mechanisms of bedaquiline resistance by analysing Mycobacterium tuberculosis isolates from South Africa. Methods: For this genomic analysis, we conducted whole-genome sequencing of Mycobacterium tuberculosis samples collected at two referral laboratories in Cape Town and Johannesburg, covering regions of South Africa with a high prevalence of tuberculosis. We used the tool ARIBA to measure the status of predefined genes that are associated with bedaquiline resistance. To produce a broad genetic landscape of M tuberculosis in South Africa, we extended our analysis to include all publicly available isolates from the European Nucleotide Archive, including isolates obtained by the CRyPTIC consortium, for which minimum inhibitory concentrations of bedaquiline were available. Findings: Between Jan 10, 2019, and July, 22, 2020, we sequenced 505 M tuberculosis isolates from 461 patients. Of the 64 isolates with mutations within the mmpR5 regulatory gene, we found 53 (83%) had independent acquisition of 31 different mutations, with a particular enrichment of truncated MmpR5 in bedaquiline-resistant isolates resulting from either frameshift mutations or the introduction of an insertion element. Truncation occurred across three M tuberculosis lineages, and were present in 66% of bedaquiline-resistant isolates. Although the distributions overlapped, the median minimum inhibitory concentration of bedaquiline was 0·25 mg/L (IQR 0·12–0·25) in mmpR5-disrupted isolates, compared with 0·06 mg/L (0·03–0·06) in wild-type M tuberculosis. Interpretation: Reduction in the susceptibility of M tuberculosis to bedaquiline has evolved repeatedly across the phylogeny. In our data, we see no evidence that this reduction has led to the spread of a successful strain in South Africa. Binary phenotyping based on the bedaquiline breakpoint might be inappropriate to monitor resistance to this drug. We recommend the use of minimum inhibitory concentrations in addition to MmpR5 truncation screening to identify moderate increases in resistance to bedaquiline. Funding: US Centers for Disease Control and Prevention.

Original publication




Journal article


The Lancet Microbe

Publication Date