Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Data-driven methods have shown tremendous progress in medical image analysis. In this context, deep learning-based supervised methods are widely popular. However, they require a large amount of training data and face issues in generalisability to unseen datasets that hinder clinical translation. Endoscopic imaging data is characterised by large inter- and intra-patient variability that makes these models more challenging to learn representative features for downstream tasks. Thus, despite the publicly available datasets and datasets that can be generated within hospitals, most supervised models still underperform. While self-supervised learning has addressed this problem to some extent in natural scene data, there is a considerable performance gap in the medical image domain. In this paper, we propose to explore patch-level instance-group discrimination and penalisation of inter-class variation using additive angular margin within the cosine similarity metrics. Our novel approach enables models to learn to cluster similar representations, thereby improving their ability to provide better separation between different classes. Our results demonstrate significant improvement on all metrics over the state-of-the-art (SOTA) methods on the test set from the same and diverse datasets. We evaluated our approach for classification, detection, and segmentation. SSL-CPCD attains notable Top 1 accuracy of 79.77% in ulcerative colitis classification, an 88.62% mean average precision (mAP) for detection, and an 82.32% dice similarity coefficient for segmentation tasks. These represent improvements of over 4%, 2%, and 3%, respectively, compared to the baseline architectures. We demonstrate that our method generalises better than all SOTA methods to unseen datasets, reporting over 7% improvement.

Original publication

DOI

10.1109/tmi.2024.3411933

Type

Journal article

Journal

IEEE transactions on medical imaging

Publication Date

06/2024

Volume

PP