ObjectivesThis study aimed to evaluate the cost-effectiveness (CE) of 4 hepatocellular carcinoma (HCC) surveillance strategies in the United Kingdom, the GAAD algorithm, which combines Gender (biological sex) and Age with Elecsys® biomarker assays, alpha-fetoprotein (AFP) and protein induced by vitamin K absence-II (previously Des-γ-carboxy prothrombin); ultrasound (US); US + AFP and GAAD + US.MethodsA de novo microsimulation state-transition Markov model was developed in Microsoft Excel® from the perspective of the United Kingdom National Health Service to calculate life-years, quality-adjusted life-years (QALYs), costs, incremental CE ratios, and net monetary benefits. Parameters were sourced from peer-reviewed published literature, national guidelines, and public cost databases. Sensitivity and scenario analyses were performed to evaluate the impact of parameter and structural uncertainty on the results.ResultsIn a simulated cohort of 100 000 patients, discounted costs and QALYs per patient were £8663 and 6·066 for US, £9095 and 6·076 for US + AFP, £8719 and 6·078 for GAAD alone, and £9114 and 6·086 for GAAD + US. At a CE threshold of £20 000/QALY, GAAD was the most cost-effective strategy; however, although most costly, GAAD + US was the most clinically effective. Sensitivity and scenario analyses indicated that HCC incidence along with costs associated with diagnostic performance influence CE.ConclusionConsidering the cost of US and low incidence of HCC in the United Kingdom, this study suggests that GAAD alone or in combination with US are cost-effective surveillance strategies compared with US and US + AFP. Although GAAD + US showed the highest QALY increase, GAAD alone is considered preferable regarding CE; however, better performance estimates for GAAD + US are needed to confirm.
Journal article
Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research
08/2024
Global Access and Policy, Roche Diagnostics International, Rotkreuz, Switzerland. Electronic address: ulises.garay@roche.com.