Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This article aims to develop a probability-based model involving the use of direct likelihood formulation and generalised linear modelling (GLM) approaches useful in estimating important disease parameters from longitudinal or repeated measurement data. The current application is based on infection with respiratory syncytial virus. The force of infection and the recovery rate or per capita loss of infection are the parameters of interest. However, because of the limitation arising from the study design and subsequently, the data generated only the force of infection is estimable. The problem of dealing with time-varying disease parameters is also addressed in the article by fitting piecewise constant parameters over time via the GLM approach. The current model formulation is based on that published in White LJ, Buttery J, Cooper B, Nokes DJ and Medley GF. Rotavirus within day care centres in Oxfordshire, UK: characterization of partial immunity. Journal of Royal Society Interface 2008; 5: 1481—1490 with an application to rotavirus transmission and immunity.

Original publication




Journal article


Statistical Methods in Medical Research


SAGE Publications

Publication Date





551 - 570