Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

This study aimed to evaluate the pharmacokinetic properties of piperaquine in the rat after intravenous and oral administration, and to identify and characterize the main piperaquine metabolites in rat plasma, urine, faeces and bile after intravenous administration. Male Sprague-Dawley rats were administered piperaquine as an emulsion orally or as a short-term intravenous infusion. Venous blood for pharmacokinetic evaluation was frequently withdrawn up to 90 h after dose. Urine, bile and faeces were collected after an infusion in rats kept in metabolic cages or in anesthetized rats. Pharmacokinetic characterization was done by compartmental modeling and non-compartmental analysis using WinNonlin. Piperaquine disposition was best described by a 3-compartment model with a rapid initial distribution phase after intravenous administration. The pharmacokinetics of piperaquine was characterized by a low clearance, a large volume of distribution and a long terminal half-life. Piperaquine displayed a low biliary clearance and less than 1% of the total dose was recovered in urine. The absolute oral bioavailability was approximately 50%. The main metabolite after intravenous administration of piperaquine was a carboxylic acid product identical to that reported in humans. The similarity with results in humans indicates the rat to be a suitable species for nonclinical in vivo piperaquine studies.

Original publication

DOI

10.1002/jps.21226

Type

Journal article

Journal

J Pharm Sci

Publication Date

08/2008

Volume

97

Pages

3400 - 3410

Keywords

Administration, Oral, Animals, Antimalarials, Biological Availability, Half-Life, Infusions, Intravenous, Male, Quinolines, Rats, Rats, Sprague-Dawley