Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Trp-229 is part of the non-nucleoside reverse transcriptase inhibitor (NNRTI)-binding pocket of HIV type 1 (HIV-1) reverse transcriptase (RT), and is also part of the "primer grip" of HIV-1 RT. Using site-directed mutagenesis, seven RT mutants were constructed bearing the mutations 229Phe, 229Tyr, 229Ile, 229His, 229Lys, 229Cys, and 229Gln. We found that all of the mutants showed severely compromised RNA- and DNA-dependent DNA polymerase activities (<2% of wild-type activity). The recombinant 229Phe and 229Tyr RT enzymes were among the mutant enzymes with the highest activity (0.7 and 1.1% of wild-type activity, respectively) and we evaluated these for resistance against several NNRTIs. No resistance was found for the 229Phe RT, but the 229Tyr RT showed a approximately 20-fold resistance against UC-781 and lower resistance against emivirine and nevirapine. Attempts to make recombinant virus strains bearing the single 229Phe or 229Tyr RT mutation failed. Experiments in which we varied the pentenyl ether substituent of the thiocarboxanilide UC-781 revealed that Trp-229 can be specifically targeted by NNRTIs and that an alkenyloxy group length of five atoms assures an optimal interaction of the thiocarboxanilides with Trp-229. Our findings indicate that Trp-229, when combined with other crucial immutable amino acids (i.e., Tyr-318), is an appropriate candidate for the targeted design of new NNRTIs.

Type

Journal article

Journal

Molecular pharmacology

Publication Date

05/2000

Volume

57

Pages

954 - 960

Addresses

Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.

Keywords

Tumor Cells, Cultured, Humans, Anilides, Furans, Tryptophan, Recombinant Proteins, Deoxyguanine Nucleotides, Reverse Transcriptase Inhibitors, Anti-HIV Agents, Mutagenesis, Site-Directed, DNA Mutational Analysis, Structure-Activity Relationship, Drug Design, HIV Reverse Transcriptase, Dideoxynucleotides