Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant surface antigen expressed on mature forms of infected erythrocytes. It is considered an important target of naturally acquired immunity. Despite its extreme sequence heterogeneity, variants of PfEMP1 can be stratified into distinct groups. Group A PfEMP1 have been independently associated with low host immunity and severe disease in several studies and are now of potential interest as vaccine candidates. Although antigen-specific antibodies are considered the main effector mechanism in immunity to malaria, the induction of efficient and long-lasting antibody responses requires CD4+ T-cell help. To date, very little is known about CD4+ T-cell responses to PfEMP1 expressed on clinical isolates. The DBLα-tag is a small region from the DBLα-domain of PfEMP1 that can be amplified with universal primers and is accessible in clinical parasite isolates. We identified the dominant expressed PfEMP1 in 41 individual clinical parasite isolates and expressed the corresponding DBLα-tag as recombinant antigen. Individual DBLα-tags were then used to activate CD4+ T-cells from acute and convalescent blood samples in children who were infected with the respective clinical parasite isolate. Here we show that CD4+ T-cell responses to the homologous DBLα-tag were induced in almost all children during acute malaria and maintained in some for 4 months. Children infected with parasites that dominantly expressed group A-like PfEMP1 were more likely to maintain antigen-specific IFNγ-producing CD4+ T-cells than children infected with parasites dominantly expressing other PfEMP1. These results suggest that group A-like PfEMP1 may induce long-lasting effector memory T-cells that might be able to provide rapid help to variant-specific B cells. Furthermore, a number of children induced CD4+ T-cell responses to heterologous DBLα-tags, suggesting that CD4+ T-cells may recognise shared epitopes between several DBLα-tags.

Original publication

DOI

10.1371/journal.pone.0030095

Type

Journal article

Journal

PLoS One

Publication Date

2012

Volume

7

Keywords

Base Sequence, CD4-Positive T-Lymphocytes, CD8-Positive T-Lymphocytes, Cells, Cultured, Child, Child, Preschool, Epitopes, Epitopes, T-Lymphocyte, Humans, Interferon-gamma, Interleukin-10, Interleukin-2, Interleukin-4, Malaria, Falciparum, Molecular Sequence Data, Plasmodium falciparum, Protozoan Proteins, T-Lymphocytes