Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Before the introduction of the heptavalent pneumococcal conjugate vaccine (Prevnar-7), the relative prevalence of serotypes of Streptococcus pneumoniae was fairly stable worldwide. We sought to develop a statistical tool to predict the relative frequency of different serotypes among disease isolates in the pre- and post-Prevnar-7 eras using the limited amount of data that is widely available. METHODS: We initially used pre-Prevnar-7 carriage prevalence and estimates of invasiveness derived from case-fatality data as predictors for the relative abundance of serotypes causing invasive pneumococcal disease during the pre- and post-Prevnar-7 eras, using negative binomial regression. We fit the model to pre-Prevnar-7 invasive pneumococcal disease data from England and Wales and used these data to (1) evaluate the performance of the model using several datasets and (2) evaluate the utility of the country-specific carriage data. We then fit an alternative model that used polysaccharide structure, a correlate of prevalence that does not require country-specific information and could be useful in determining the postvaccine population structure, as a predictor. RESULTS: Predictions from the initial model fit data from several pediatric populations in the pre-Prevnar-7 era. After the introduction of Prevnar-7, the model still had a good negative predictive value, though substantial unexplained variation remained. The alternative model had a good negative predictive value but poor positive predictive value. Both models demonstrate that the pneumococcal population follows a somewhat predictable pattern even after vaccination. CONCLUSIONS: This approach provides a preliminary framework to evaluate the potential patterns and impact of serotypes causing invasive pneumococcal disease.

Original publication

DOI

10.1097/EDE.0b013e3182087634

Type

Journal article

Journal

Epidemiology

Publication Date

03/2011

Volume

22

Pages

199 - 207

Keywords

England, Female, Forecasting, Humans, Immunization, Kenya, Male, Models, Statistical, Pneumococcal Infections, Pneumococcal Vaccines, Serotyping, Streptococcus pneumoniae, United States, Vaccines, Conjugate, Wales