Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Because of the breakdown of malaria control programs, the constant emergence of drug resistant parasites, and, possibly, climatic changes malaria poses a major problem for the developing countries. In addition, because of the speed of international travel it is being seen with increasing frequency as an imported disease in non-tropical countries. This update explores recent information about the pathophysiology of the disease, its protean hematological manifestations, and how carrier frequencies for the common hemoglobin disorders have been maintained by relative resistance to the malarial parasite. In Section I, Dr. Louis Miller and colleagues consider recent information about the pathophysiology of malarial infection, including new information about interactions between the malarial parasite and vascular endothelium. In Section II, Dr. David Roberts discusses what is known about the complex interactions between red cell production and destruction that characterize the anemia of malaria, one of the commonest causes of anemia in tropical countries. In Section III, Dr. David Weatherall reviews recent studies on how the high gene frequencies of the thalassemias and hemoglobin variants have been maintained by heterozygote advantage against malaria and how malaria has shaped the genetic structure of human populations.

Type

Journal article

Journal

Hematology Am Soc Hematol Educ Program

Publication Date

2002

Pages

35 - 57

Keywords

Adult, Animals, Blood Group Antigens, Child, Erythrocytes, Genetic Variation, HLA Antigens, Hemoglobins, Humans, Immunity, Malaria, Plasmodium, Transfusion Reaction