Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Five metabolites of the antimalarial piperaquine (PQ) (1,3-bis-[4-(7-chloroquinolyl-4)-piperazinyl-1]-propane) have been identified and their molecular structures characterized. After a p.o. dose of dihydroartemisinin-piperaquine, urine collected over 16 h from two healthy subjects was analyzed using liquid chromatography (LC)/UV, LC/tandem mass spectrometry (MS/MS), Fourier transform ion cyclotron resonance (FTICR)/MS, and H NMR. Five different peaks were recognized as possible metabolites [M1, 320 m/z; M2, M3, and M4, 551 m/z (PQ + 16 m/z); and M5, 567 m/z (PQ + 32 m/z)] using LC/MS/MS with gradient elution. The proposed carboxylic M1 has a theoretical monoisotopic molecular mass of 320.1166 m/z, which is in accordance with the FTICR/MS (320.1168 m/z) findings. The LC/MS/MS results also showed a 551 m/z metabolite (M2) with a distinct difference both in polarity and fragmentation pattern compared with PQ, 7-hydroxypiperaquine, and the other 551 m/z metabolites. We suggest that this is caused by N-oxidation of PQ. The results showed two metabolites (M3 and M4) with a molecular ion at 551 m/z and similar fragmentation pattern as both PQ and 7-hydroxypiperaquine; therefore, they are likely to be hydroxylated PQ metabolites. The molecular structures of M1 and M2 were also confirmed using H NMR. Urinary excretion rate in one subject suggested a terminal elimination half-life of about 53 days for M1. Assuming formation rate-limiting kinetics, this would support recent findings that the terminal elimination half-life of PQ has been underestimated previously.

Original publication

DOI

10.1124/dmd.106.011494

Type

Journal article

Journal

Drug Metab Dispos

Publication Date

12/2006

Volume

34

Pages

2011 - 2019

Keywords

Antimalarials, Artemisinins, Chromatography, Liquid, Drug Combinations, Humans, Magnetic Resonance Spectroscopy, Male, Quinolines, Sesquiterpenes, Tandem Mass Spectrometry