Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In acute malaria, red blood cells (RBCs) that have been parasitized, but no longer contain a malaria parasite, are found in the circulation (ring-infected erythrocyte surface antigen [RESA]-RBCs). These are thought to arise by splenic removal of dead or damaged intraerythrocytic parasites and return of the intact RBCs to the circulation. In a study of 5 patients with acute falciparum malaria who had previously undergone splenectomy, it was found that none of these 5 patients had any circulating RESA-RBCs, in contrast to the uniform finding of RESA-RBCs in all patients with acute malaria and intact spleens. Parasite clearance after artesunate treatment was markedly prolonged, although the parasites appeared to be dead and could not be cultured ex vivo. These observations confirm the central role of the spleen in the clearance of parasitized RBCs after antimalarial treatment with an artemisinin derivative. Current criteria for high-grade antimalarial drug resistance that are based on changes in parasitemia are not appropriate for asplenic patients.

Original publication

DOI

10.1086/340213

Type

Journal article

Journal

J Infect Dis

Publication Date

15/05/2002

Volume

185

Pages

1538 - 1541

Keywords

Adult, Animals, Antigens, Protozoan, Antimalarials, Artemisinins, Artesunate, Child, Erythrocytes, Female, Humans, Malaria, Falciparum, Male, Middle Aged, Parasitemia, Plasmodium falciparum, Protozoan Proteins, Sesquiterpenes, Spleen, Splenectomy