Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Comparative genome hybridization (CGH) to DNA microarrays (array CGH) is a technique capable of detecting deletions and duplications in genomes at high resolution. However, array CGH studies of the human genome noting false negative and false positive results using large insert clones as probes have raised important concerns regarding the suitability of this approach for clinical diagnostic applications. Here, we adapt the Smith-Waterman dynamic-programming algorithm to provide a sensitive and robust analytic approach (SW-ARRAY) for detecting copy-number changes in array CGH data. In a blind series of hybridizations to arrays consisting of the entire tiling path for the terminal 2 Mb of human chromosome 16p, the method identified all monosomies between 267 and 1567 kb with a high degree of statistical significance and accurately located the boundaries of deletions in the range 267-1052 kb. The approach is unique in offering both a nonparametric segmentation procedure and a nonparametric test of significance. It is scalable and well-suited to high resolution whole genome array CGH studies that use array probes derived from large insert clones as well as PCR products and oligonucleotides.

Original publication

DOI

10.1093/nar/gki643

Type

Journal article

Journal

Nucleic Acids Res

Publication Date

2005

Volume

33

Pages

3455 - 3464

Keywords

Algorithms, Aneuploidy, Chromosome Deletion, Computational Biology, DNA Probes, Genome, Human, Genomics, Humans, Oligonucleotide Array Sequence Analysis, Software