Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

T-cell-mediated responses against the liver-stage of Plasmodium falciparum are critical for protection in the human irradiated sporozoite model and several animal models. Heterologous prime-boost approaches, employing plasmid DNA and viral vector delivery of malarial DNA sequences, have proved particularly promising for maximising T-cell-mediated protection in animal models. The T-cell responses induced by this prime-boost regime, in animals and humans, are substantially greater than the sum of the responses induced by DNA or MVA vaccines used alone, leading to the term introduced here of "synergistic" prime-boost immunisation. The insert in our first generation clinical constructs is known as multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We have performed an extensive series of phase I/II trials evaluating various prime-boost combination regimens for delivery of ME-TRAP in over 500 malaria-naïve and malaria-exposed individuals. The three delivery vectors are DNA, modified vaccinia virus Ankara (MVA) and, more recently, fowlpox strain 9 (FP9). Administration was intra-epidermal and intramuscular for DNA and intradermal for MVA and FP9. Doses of DNA ranged from 4 microg to 2mg. Doses of MVA were up to 1.5 x 10(8) plaque forming units (pfu) and of FP9, up to 1.0 x 10(8)pfu. Further trials employing bacille Calmette-Guérin (BCG) as the priming agent and MVA expressing antigen 85A of Mycobacterium tuberculosis as the boosting agent has extended the scope of synergistic prime-boost vaccination. In this review we summarise the safety, immunogenicity and efficacy results from these malaria and tuberculosis vaccine clinical trials.

Original publication

DOI

10.1016/j.vaccine.2005.08.048

Type

Journal article

Journal

Vaccine

Publication Date

22/05/2006

Volume

24

Pages

4554 - 4561

Keywords

Adult, Animals, BCG Vaccine, Humans, Malaria, Plasmodium falciparum, Tuberculosis, Vaccines, DNA, Vaccinia virus