Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The 1000 Genomes Project and disease-specific sequencing efforts are producing large collections of haplotypes that can be used as reference panels for genotype imputation in genome-wide association studies (GWAS). However, imputing from large reference panels with existing methods imposes a high computational burden. We introduce a strategy called 'pre-phasing' that maintains the accuracy of leading methods while reducing computational costs. We first statistically estimate the haplotypes for each individual within the GWAS sample (pre-phasing) and then impute missing genotypes into these estimated haplotypes. This reduces the computational cost because (i) the GWAS samples must be phased only once, whereas standard methods would implicitly repeat phasing with each reference panel update, and (ii) it is much faster to match a phased GWAS haplotype to one reference haplotype than to match two unphased GWAS genotypes to a pair of reference haplotypes. We implemented our approach in the MaCH and IMPUTE2 frameworks, and we tested it on data sets from the Wellcome Trust Case Control Consortium 2 (WTCCC2), the Genetic Association Information Network (GAIN), the Women's Health Initiative (WHI) and the 1000 Genomes Project. This strategy will be particularly valuable for repeated imputation as reference panels evolve.

Original publication

DOI

10.1038/ng.2354

Type

Journal article

Journal

Nat Genet

Publication Date

22/07/2012

Volume

44

Pages

955 - 959

Keywords

Computational Biology, Databases, Genetic, Genome-Wide Association Study, Genotype, Haplotypes, Human Genome Project, Humans