Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Our understanding of immunity has historically been informed by studying heritable mutations in both the adaptive and innate immune responses, including primary immunodeficiency and autoimmune diseases. Recent advances achieved through the application of genomic and epigenomic approaches are reshaping the study of immune dysfunction and opening up new avenues for therapeutic interventions. Moreover, applying genomic techniques to resolve functionally important genetic variation between individuals is providing new insights into immune function in health. This review describes progress in the study of rare variants and primary immunodeficiency diseases arising from whole-exome sequencing (WES), and discusses the application, success, and challenges of applying genome-wide association studies (GWAS) to disorders of immune function and how they may inform more rational use of therapeutics. In addition, the application of expression quantitative-trait mapping to immune phenotypes, progress in understanding MHC disease associations, and insights into epigenetic mechanisms at the interface of immunity and the environment are reviewed.

Original publication

DOI

10.1016/j.tig.2012.10.006

Type

Journal article

Journal

Trends Genet

Publication Date

02/2013

Volume

29

Pages

74 - 83

Keywords

Epigenomics, Exome, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Genomics, Humans, Immunity, Immunologic Deficiency Syndromes, Sequence Analysis, DNA