The immunogenetics of human infectious diseases.
Hill AV.
Twin and adoptee studies have indicated that host genetic factors are major determinants of susceptibility to infectious disease in humans. Twin studies have also found high heritabilities for many humoral and cellular immune responses to pathogen antigens, with most of the genetic component mapping outside of the major histocompatibility complex. Candidate gene studies have implicated several immunogenetic polymorphisms in human infectious diseases. HLA variation has been associated with susceptibility or resistance to malaria, tuberculosis, leprosy, AIDS, and hepatitis virus persistence. Variation in the tumor necrosis factor gene promoter has also been associated with several infectious diseases. Chemokine receptor polymorphism affects both susceptibility ot HIV-1 infection and the rate of progression to AIDS. Inactivating mutations of the gamma-interferon receptor lead to increased susceptibility to typical mycobacteria and disseminated BCG infection in homozygous children. The active form of vitamin D has immunomodulatory effects, and allelic variants of the vitamin D receptor appear to be associated with differential susceptibility to several infectious diseases. NRAMP1, a macrophage gene identified by positional cloning of its murine homologue, has been implicated in susceptibility to tuberculosis in Africans. Whole genome linkage analysis of multi-case families is now being used to map and identify new loci affecting susceptibility to infectious diseases. It is likely that susceptibility to most microorganisms is determined by a large number of polymorphic genes, and identification of these should provide insights into protective and pathogenic mechanisms in infectious diseases.