Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tuberculous meningitis is characterized by cerebral tissue destruction. Monocytes, pivotal in immune responses to Mycobacterium tuberculosis, secrete matrix metalloproteinase-9 (MMP-9), which facilitates leukocyte migration across the blood-brain barrier, but may cause cerebral injury. In vitro, human monocytic (THP-1) cells infected by live, virulent M. tuberculosis secreted MMP-9 in a dose-dependent manner. At 24 h, MMP-9 concentrations increased 10-fold to 239 +/- 75 ng/ml (p = 0.001 vs controls). MMP-9 mRNA became detectable at 24--48 h. In contrast, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) gene expression and secretion were similar to constitutive levels from controls at 24 h and increased just 5-fold by 48 h. In vivo investigation revealed MMP-9 concentration per leukocyte in cerebrospinal fluid (CSF) from tuberculous meningitis patients (n = 23; median (range), 3.19 (0.19--31.00) ng/ml/cell) to be higher than that in bacterial (n = 12; 0.23 (0.01--18.37) ng/ml/cell) or viral meningitis (n = 20; 0.20 (0.04--31.00) ng/ml/cell; p < 0.01). TIMP-1, which was constitutively secreted into CSF, was not elevated in tuberculous compared with bacterial meningitis or controls. Thus, a phenotype in which MMP-9 activity is relatively unrestricted by TIMP-1 developed both in vitro and in vivo. This is functionally significant, since MMP-9 concentrations per CSF leukocyte (but not TIMP-1 concentrations) were elevated in fatal tuberculous meningitis and in patients with signs of cerebral tissue damage (unconsciousness, confusion, or neurological deficit; p < 0.05). However, MMP-9 activity was unrelated to the severity of systemic illness. In summary, M. tuberculosis-infected monocytic cells develop a matrix-degrading phenotype, which was observed in vivo and relates to clinical signs reflecting cerebral injury in tuberculous meningitis.

Original publication

DOI

10.4049/jimmunol.166.6.4223

Type

Journal article

Journal

J Immunol

Publication Date

15/03/2001

Volume

166

Pages

4223 - 4230

Keywords

Adult, Cell Line, Enzyme Activation, Extracellular Matrix, Female, Gene Expression Regulation, Humans, Leukocyte Count, Matrix Metalloproteinase 9, Meningitis, Bacterial, Meningitis, Viral, Monocytes, Mycobacterium tuberculosis, Phenotype, Tissue Inhibitor of Metalloproteinase-1, Transcription, Genetic, Tuberculosis, Meningeal