Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mobile phone data are increasingly being used to quantify the movements of human populations for a wide range of social, scientific and public health research. However, making population-level inferences using these data is complicated by differential ownership of phones among different demographic groups that may exhibit variable mobility. Here, we quantify the effects of ownership bias on mobility estimates by coupling two data sources from the same country during the same time frame. We analyse mobility patterns from one of the largest mobile phone datasets studied, representing the daily movements of nearly 15 million individuals in Kenya over the course of a year. We couple this analysis with the results from a survey of socioeconomic status, mobile phone ownership and usage patterns across the country, providing regional estimates of population distributions of income, reported airtime expenditure and actual airtime expenditure across the country. We match the two data sources and show that mobility estimates are surprisingly robust to the substantial biases in phone ownership across different geographical and socioeconomic groups.

Original publication

DOI

10.1098/rsif.2012.0986

Type

Journal article

Journal

J R Soc Interface

Publication Date

06/04/2013

Volume

10

Keywords

Cell Phone, Humans, Kenya, Models, Biological, Motor Activity, Selection Bias, Socioeconomic Factors