Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The Dengue National Control Program was established in Cambodia in 2000 and has reported between 10,000 and 40,000 dengue cases per year with a case fatality rate ranging from 0.7 to 1.7. In this study 39 DENV-2 and 57 DENV-3 viruses isolated from patients between 2000 and 2008 were fully sequenced. Five DENV2 and four DENV3 distinct lineages with different dynamics were identified. Each lineage was characterized by the presence of specific mutations with no evidence of recombination. In both DENV-2 and DENV-3 the lineages present prior to 2003 were replaced after that date by unrelated lineages. After 2003, DENV-2 lineages D2-3 and D2-4 cocirculated until 2007 when they were almost completely replaced by a lineage D2-5 which emerged from D2-3 Conversely, all DENV-3 lineages remained, diversified and cocirculated with novel lineages emerging. Years 2006 and 2007 were marked by a high prevalence of DENV-3 and 2007 with a large dengue outbreak and a high proportion of patients with severe disease. Selective sweeps in DENV-1 and DENV-2 were linked to immunological escape to a predominately DENV-3-driven immunological response. The complex dynamic of dengue in Cambodia in the last ten years has been associated with a combination of stochastic climatic events, cocirculation, coevolution, adaptation to different vector populations, and with the human population immunological landscape.

Original publication

DOI

10.1016/j.meegid.2012.05.012

Type

Journal article

Journal

Infect Genet Evol

Publication Date

04/2013

Volume

15

Pages

77 - 86

Keywords

Adolescent, Adult, Aged, Amino Acid Sequence, Base Sequence, Cambodia, Child, Child, Preschool, Climate, Dengue, Dengue Virus, Disasters, Genes, Viral, Genome, Viral, Humans, Infant, Middle Aged, Molecular Sequence Data, Mutation, Open Reading Frames, Phylogeny, Polymorphism, Genetic, Selection, Genetic, Serotyping, Young Adult