Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Vaccination against Plasmodium falciparum malaria could reduce the worldwide burden of this disease, and decrease its high mortality in children. Replication-defective recombinant adenovirus vectors carrying P. falciparum epitopes may be useful as part of a vaccine that raises cellular immunity to the pre-erythrocytic stage of malaria infection. However, existing immunity to the adenovirus vector results in antibody-mediated neutralization of the vaccine vector, and reduced vaccine immunogenicity. Our aim was to examine a population of children who are at risk from P. falciparum malaria for neutralizing immunity to replication-deficient recombinant chimpanzee adenovirus 63 vector (AdC63), compared to human adenovirus 5 vector (AdHu5). We measured 50% and 90% vector neutralization titers in 200 individual sera, taken from a cohort of children from Kenya, using a secreted alkaline phosphatase neutralization assay. We found that 23% of the children (aged 1-6 years) had high-titer neutralizing antibodies to AdHu5, and 4% had high-titer neutralizing antibodies to AdC63. Immunity to both vectors was age-dependent. Low-level neutralization of AdC63 was significantly less frequent than AdHu5 neutralization at the 90% neutralization level. We conclude that AdC63 may be a useful vector as part of a prime-boost malaria vaccine in children.

Original publication

DOI

10.1016/j.vaccine.2009.03.080

Type

Journal article

Journal

Vaccine

Publication Date

02/06/2009

Volume

27

Pages

3501 - 3504

Keywords

Adenoviruses, Human, Adenoviruses, Simian, Animals, Antibodies, Viral, Child, Child, Preschool, Cohort Studies, Genetic Vectors, Humans, Infant, Malaria Vaccines, Neutralization Tests, Pan troglodytes, Seroepidemiologic Studies, Vaccination, Vaccines, Synthetic