Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Nitric oxide (NO), a key macrophage antimycobacterial mediator that ameliorates immunopathology, is measurable in exhaled breath in individuals with pulmonary tuberculosis. We investigated relationships between fractional exhale NO (FENO) and initial pulmonary tuberculosis severity, change during treatment, and relationship with conversion of sputum culture to negative at 2 months. METHODS: In Papua, we measured FENO in patients with pulmonary tuberculosis at baseline and serially over 6 months and once in healthy controls. Treatment outcomes were conversion of sputum culture results at 2 months and time to conversion of sputum microscopy results. RESULTS: Among 200 patients with pulmonary tuberculosis and 88 controls, FENO was lower for patients with pulmonary tuberculosis at diagnosis (geometric mean FENO, 12.7 parts per billion [ppb]; 95% confidence interval [CI], 11.6-13.8) than for controls (geometric mean FENO, 16.6 ppb; 95% CI, 14.2-19.5; P = .002), fell further after treatment initiation (nadir at 1 week), and then recovered by 6 months (P = .03). Lower FENO was associated with more-severe tuberculosis disease, with FENO directly proportional to weight (P < .001) and forced vital-capacity (P = .001) and inversely proportional to radiological score (P = .03). People whose FENO increased or remained unchanged by 2 months were 2.7-fold more likely to achieve conversion of sputum culture than those whose FENO decreased (odds ratio, 2.72; 95% CI, 1.05-7.12; P = .04). CONCLUSIONS: Among patients with pulmonary tuberculosis, impaired pulmonary NO bioavailability is associated with more-severe disease and delayed mycobacterial clearance. Measures to increase pulmonary NO warrant investigation as adjunctive tuberculosis treatments.

Original publication




Journal article


J Infect Dis

Publication Date





616 - 626


L-arginine, M2 macrophages, biomarker, exhaled nitric oxide, tuberculosis, Adolescent, Adult, Aged, Antitubercular Agents, Bacterial Load, Biological Availability, Body Weight, Breath Tests, Female, Humans, Lung, Male, Middle Aged, Nitric Oxide, Radiography, Severity of Illness Index, Sputum, Tuberculosis, Pulmonary, Vital Capacity, Young Adult