Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractVirus-like particles are supra-molecular assemblages, usually icosahedral or rod-like structures. They incorporate key immunologic features of viruses which include repetitive surfaces, particulate structures and induction of innate immunity through activation of pathogen-associated molecular-pattern recognition receptors. They carry no replicative genetic information and can be produced recombinantly in large scale. Virus-like particles thus represent a safe and effective vaccine platform for inducing potent B- and T-cell responses. In addition to being effective vaccines against the corresponding virus from which they are derived, virus-like particles can also be used to present foreign epitopes to the immune system. This can be achieved by genetic fusion or chemical conjugation. This technological innovation has greatly broadened the scope of their use, from immunizing against microbial pathogens to immunotherapy for chronic diseases. Towards this end, virus-like particles have been used to induce autoantibodies to disease-associated self-molecules involved in chronic diseases, such as hypertension and Alzheimer's disease. The recognition of the potent immunogenicity and commercial potential for virus-like particles has greatly accelerated research and development activities. During the last decade, two prophylactic virus-like particle vaccines have been registered for human use, while another 12 vaccines entered clinical development.

Original publication

DOI

10.1515/bc.2008.064

Type

Journal article

Journal

Biological Chemistry

Publisher

Walter de Gruyter GmbH

Publication Date

01/05/2008

Volume

389