Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The ParMRC plasmid partitioning apparatus is one of the best characterized systems for bacterial DNA segregation. Bundles of actin-like filaments are used to push plasmids to opposite poles of the cell, whereupon they are stably inherited on cell division. This plasmid-encoded system comprises just three components: an actin-like protein, ParM, a DNA-binding adaptor protein, ParR, and a centromere-like region, parC. The properties and interactions of these components have been finely tuned to enable ParM filaments to search the cell space for plasmids and then move ParR-parC-bound DNA molecules apart. In this Review, we look at some of the most exciting questions in the field concerning the exact molecular mechanisms by which the components of this self-contained system modulate one another's activity to achieve bipolar DNA segregation.

Original publication




Journal article


Nat Rev Microbiol

Publication Date





683 - 692


Actins, Bacteria, DNA, Bacterial, Escherichia coli Proteins, Models, Molecular, Plasmids, Protein Binding