Laboratory Detection of Artemisinin-Resistant Plasmodium falciparum
Chotivanich K., Tripura R., Das D., Yi P., Day NPJ., Pukrittayakamee S., Chuor CM., Socheat D., Dondorp AM., White NJ.
ABSTRACTConventional 48-hin vitrosusceptibility tests have low sensitivity in identifying artemisinin-resistantPlasmodium falciparum, defined phenotypically by lowin vivoparasite clearance rates. We hypothesized originally that this discrepancy was explained by a loss of ring-stage susceptibility and so developed a simple field-adapted 24-h trophozoite maturation inhibition (TMI) assay focusing on the ring stage and compared it to the standard 48-h schizont maturation inhibition (WHO) test. In Pailin, western Cambodia, where artemisinin-resistantP. falciparumis prevalent, the TMI test mean (95% confidence interval) 50% inhibitory concentration (IC50) for artesunate was 6.8 (5.2 to 8.3) ng/ml compared with 1.5 (1.2 to 1.8) ng/ml for the standard 48-h WHO test (P= 0.001). TMI IC50s correlated significantly with thein vivoresponses to artesunate (parasite clearance time [r= 0.44,P= 0.001] and parasite clearance half-life [r= 0.46,P= 0.001]), whereas the standard 48-h test values did not. On continuous culture of two resistant isolates, the artemisinin-resistant phenotype was lost after 6 weeks (IC50s fell from 10 and 12 ng/ml to 2.7 and 3 ng/ml, respectively). Slow parasite clearance in falciparum malaria in western Cambodia results from reduced ring-stage susceptibility.