Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Antibody responses against antibodies, such as rheumatoid factors, are found in several immunopathological diseases and may play a role in disease pathogenesis. Experience shows that they are usually difficult to induce experimentally. Antibodies specific for immunoglobulin constant regions (anti-allotypic) or for variable regions (anti-idiotypic) have been investigated in animal models; the latter have even been postulated to regulate antibody and T cell responses via network-like interactions. Why and how such anti-antibodies are induced during autoimmune diseases, has remained largely unclear. Because repetitively arranged epitopes in a paracrystalline structure of a viral envelope cross-link B cell receptors efficiently to induce a prompt T-independent IgM response, this study used immune complexes containing viruses or bacteria to evaluate the role of antigen pattern for induction of anti-antibody responses. We present evidence that antibodies bound to strictly ordered, but not to irregularly arranged, antigens dramatically enhance induction of anti-antibodies, already after a single immunization and without using adjuvants. The results indicate a novel link between anti-antibody responses and infectious agents, and suggest a similar role for repetitive self-antigens such as DNA or collagen involved in chronic immunopathological diseases.

Original publication

DOI

10.1084/jem.185.10.1785

Type

Journal article

Journal

Journal of Experimental Medicine

Publisher

Rockefeller University Press

Publication Date

19/05/1997

Volume

185

Pages

1785 - 1792