Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2014 The Authors. Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma and Immunology. Conclusions Sputum cytokine profiling can determine distinct and overlapping groups of subjects with asthma and COPD, supporting both the British and Dutch hypotheses. These findings may contribute to improved patient classification to enable stratified medicine.Results Discriminant analysis distinguished severe asthma from COPD completely using a combination of clinical and biological variables. Factor and cluster analyses of the sputum cytokine profiles revealed 3 biological clusters: cluster 1: asthma predominant, eosinophilic, high TH2 cytokines; cluster 2: asthma and COPD overlap, neutrophilic; cluster 3: COPD predominant, mixed eosinophilic and neutrophilic. Validation subjects were classified into 3 subgroups using discriminant analysis, or disease status with a binary assessment of sputum IL-1β expression. Sputum cellular and cytokine profiles of the validation subgroups were similar to the subgroups from the test study.Background Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous diseases.Objective We sought to determine, in terms of their sputum cellular and mediator profiles, the extent to which they represent distinct or overlapping conditions supporting either the "British" or "Dutch" hypotheses of airway disease pathogenesis.Methods We compared the clinical and physiological characteristics and sputum mediators between 86 subjects with severe asthma and 75 with moderate-to-severe COPD. Biological subgroups were determined using factor and cluster analyses on 18 sputum cytokines. The subgroups were validated on independent severe asthma (n = 166) and COPD (n = 58) cohorts. Two techniques were used to assign the validation subjects to subgroups: linear discriminant analysis, or the best identified discriminator (single cytokine) in combination with subject disease status (asthma or COPD).

Original publication

DOI

10.1016/j.jaci.2014.06.035

Type

Journal article

Journal

Journal of Allergy and Clinical Immunology

Publication Date

01/01/2015

Volume

135

Pages

63 - 72.e10