Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A sensitive regulator of cellular potassium A class of potassium channels called K2P channels modulates resting membrane potential in most cells. The channels are regulated by multiple ligands, including the antidepressant drug Prozac, as well as factors such as mechanical stretch and voltage. Dong et al. determined the structure of the human K2P channel, TREK-2, in two conformations and bound to a metabolite of Prozac. The structures show how ligand binding or mechanical stretch might induce switching between the states. Although both states have open channels, one appears primed for gating. A Prozac metabolite binds to the primed state and prevents conformational switching. K2P channels are not a target of Prozac, but their inhibition may contribute to side effects. Science , this issue p. 1256

Original publication

DOI

10.1126/science.1261512

Type

Journal article

Journal

Science

Publisher

American Association for the Advancement of Science (AAAS)

Publication Date

13/03/2015

Volume

347

Pages

1256 - 1259