Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although the past decade has seen tremendous progress in our understanding of fine-scale recombination, little is known about non-crossover (NCO) gene conversion. We report the first genome-wide study of NCO events in humans. Using SNP array data from 98 meioses, we identified 103 sites affected by NCO, of which 50/52 were confirmed in sequence data. Overlap with double strand break (DSB) hotspots indicates that most of the events are likely of meiotic origin. We estimate that a site is involved in a NCO at a rate of 5.9 × 10(-6)/bp/generation, consistent with sperm-typing studies, and infer that tract lengths span at least an order of magnitude. Observed NCO events show strong allelic bias at heterozygous AT/GC SNPs, with 68% (58-78%) transmitting GC alleles (p = 5 × 10(-4)). Strikingly, in 4 of 15 regions with resequencing data, multiple disjoint NCO tracts cluster in close proximity (∼20-30 kb), a phenomenon not previously seen in mammals.

Original publication

DOI

10.7554/eLife.04637

Type

Journal article

Journal

Elife

Publication Date

25/03/2015

Volume

4

Keywords

GC-bias, chromosomes, complex crossover, evolutionary biology, gene conversion, genes, genomics, haplotypes, human, non-crossover, recombination, Alleles, Base Composition, Base Sequence, Cluster Analysis, Crossing Over, Genetic, Female, Gene Conversion, Humans, Male, Pedigree, Polymorphism, Single Nucleotide