Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A majority of the autoantibodies in the disease myasthenia gravis (MG) are directed against the alpha-subunit of the muscle nicotinic acetylcholine receptor (AChR). Unlike AChR alpha-subunits previously characterised from other species, the human alpha-subunit exists as two isoforms. The isoforms are generated by alternate splicing of an additional exon located between exons P3 and P4, termed P3A. The 25 amino acids encoded by the P3A exon are incorporated into the extracellular region of the alpha-subunit, and so may be relevant to the pathogenesis of MG. Genomic sequences from rhesus monkey, and from dog and cat, which are susceptible to MG, were characterised between AChR alpha-subunit exons P3 and P4. Although regions homologous to the P3A exon were identified for each of these species, analysis by RT-PCR showed that they are not expressed. At variance with a previous report, constitutive expression of mRNA encoding the human P3A+ alpha-subunit isoform was not detected in heart, kidney, liver, lung or brain. Differential expression of the two alpha-subunit isoforms was not seen during fetal muscle development or in muscle from MG patients. In all cases where mRNAs encoding the two alpha-subunit isoforms have been detected, they are present at an approximate 1:1 ratio.

Original publication

DOI

10.1093/nar/21.23.5463

Type

Journal article

Journal

Nucleic Acids Res

Publication Date

25/11/1993

Volume

21

Pages

5463 - 5467

Keywords

Alternative Splicing, Animals, Base Sequence, Cats, DNA Primers, DNA, Complementary, Dogs, Exons, Gene Expression, Humans, Macaca mulatta, Molecular Sequence Data, Myasthenia Gravis, RNA, Messenger, Receptors, Nicotinic, Sequence Alignment, Sequence Homology, Nucleic Acid, Tissue Distribution