Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

SummaryGenetic determinants of resistance to hypobaric hypoxia in the Sherpa are still unknown. Since adaptive gene variants must still be subjected to positive selection, linkage disequilibrium between such variants and specific alleles of flanking DNA markers is expected. Following this line of reasoning, we performed a human genome scan using 998 polymorphic DNA markers in 7 unrelated Sherpa porters living in the Solu‐Khumbu area. This minimalist approach succeeded in detecting 8 DNA markers showing homozygosity for the same shared allele. Analysis of additional DNA samples from 2 more Sherpa porters focused our attention on three polymorphic DNA markers (D6S1697, D14S274, D17S1795) showing homozygosity for the same shared allele in 8 out 9 tested individuals. Analysis of DNA samples from Sherpa and non‐Sherpa populations of Nepal proved HW equilibrium in both populations for markers D14S274 and D17S1795, while an excess of heterozygotes was observed in the Sherpa population for marker D6S1697. A significant difference in allele frequencies for D14S274 and D17S1795 between the two populations was observed. These findings exclude the possibility that homozygosity for 3 specific loci in 8 unrelated individuals might be ascribed to inbreeding or recent genetic drift. We therefore conclude that the chromosomal segments detected by such DNA markers may include genes involved in adaptation to hypobaric hypoxia.

Original publication

DOI

10.1111/j.1469-1809.2007.00358.x

Type

Journal article

Journal

Annals of Human Genetics

Publisher

Wiley

Publication Date

09/2007

Volume

71

Pages

630 - 638