Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The conventional means of studying Epstein-Barr virus (EBV)-induced cytotoxic T-lymphocyte (CTL) memory, by in vitro stimulation with the latently infected autologous lymphoblastoid cell line (LCL), has important limitations. First, it gives no information on memory to lytic cycle antigens; second, it preferentially amplifies the dominant components of latent antigen-specific memory at the expense of key subdominant reactivities. Here we describe an alternative approach, based on in vitro stimulation with epitope peptide-loaded dendritic cells (DCs), which allows one to probe the CTL repertoire for any individual reactivity of choice; this method proved significantly more efficient than stimulation with peptide alone. Using this approach we first show that reactivities to the immunodominant and subdominant lytic cycle epitopes identified by T cells during primary EBV infection are regularly detectable in the CTL memory of virus carriers; this implies that in such carriers chronic virus replication remains under direct T-cell control. We further show that subdominant latent cycle reactivities to epitopes in the latent membrane protein LMP2, though rarely undetectable in LCL-stimulated populations, can be reactivated by DC stimulation and selectively expanded as polyclonal CTL lines; the adoptive transfer of such preparations may be of value in targeting certain EBV-positive malignancies.

Original publication

DOI

10.1128/jvi.73.1.334-342.1999

Type

Journal article

Journal

Journal of virology

Publication Date

01/1999

Volume

73

Pages

334 - 342

Addresses

CRC Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, B15 2TA United Kingdom.

Keywords

Dendritic Cells, T-Lymphocytes, Cytotoxic, Humans, Herpesvirus 4, Human, DNA-Binding Proteins, Trans-Activators, Viral Proteins, Viral Matrix Proteins, Epstein-Barr Virus Nuclear Antigens, Immunodominant Epitopes, Immunologic Memory