Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Artemisinin-resistant Plasmodium falciparum parasites are rapidly spreading in Southeast Asia, yet nothing is known about their transmission. This knowledge gap and the possibility that these parasites will spread to Africa endanger global efforts to eliminate malaria. Here we produce gametocytes from parasite clinical isolates that displayed artemisinin resistance in patients and in vitro, and use them to infect native and non-native mosquito vectors. We show that contemporary artemisinin-resistant isolates from Cambodia develop and produce sporozoites in two Southeast Asian vectors, Anopheles dirus and Anopheles minimus, and the major African vector, Anopheles coluzzii (formerly Anopheles gambiae M). The ability of artemisinin-resistant parasites to infect such highly diverse Anopheles species, combined with their higher gametocyte prevalence in patients, may explain the rapid expansion of these parasites in Cambodia and neighbouring countries, and further compromise efforts to prevent their global spread.

Original publication

DOI

10.1038/ncomms9614

Type

Journal article

Journal

Nat Commun

Publication Date

20/10/2015

Volume

6

Keywords

Africa, Animals, Anopheles, Antimalarials, Artemisinins, Asia, Southeastern, Cambodia, Culicidae, Drug Resistance, Microbial, Humans, Insect Vectors, Malaria, Falciparum, Plasmodium falciparum, Protozoan Proteins, Sporozoites