Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Peptide splicing allows the production of antigenic peptides composed of two fragments initially non-contiguous in the parental protein. The proposed mechanism of splicing is a transpeptidation occurring within the proteasome. Three spliced peptides, derived from FGF-5, melanoma protein gp100 and nuclear protein SP110, have been described. Here, we compared the production of these spliced peptides by the standard proteasome and the immunoproteasome. Differential isotope labelling was used to quantify (by mass spectrometry) the fragments contained in digests obtained with precursor peptides and purified proteasomes. The results show that both the standard and the immunoproteasomes can produce spliced peptides although they differ in their efficiency of production of each peptide. The FGF-5 and gp100 peptides are more efficiently produced by the standard proteasome, whereas the SP110 peptide is more efficiently produced by the immunoproteasome. This seems to result from differences in the production of the two splicing partners, which depends on a balance between cleavages liberating or destroying those fragments. By showing that splicing depends on the efficiency of production of the splicing partners, these results also support the transpeptidation model of peptide splicing. Furthermore, given the presence of immunoproteasomes in dendritic cells and cells exposed to IFN-γ, the findings may be relevant for vaccine design.

Original publication

DOI

10.1002/eji.201040750

Type

Journal article

Journal

Eur J Immunol

Publication Date

01/2011

Volume

41

Pages

39 - 46

Keywords

Antigen Presentation, Antigens, Cell Line, Fibroblast Growth Factor 5, Humans, Minor Histocompatibility Antigens, Nuclear Proteins, Peptide Fragments, Proteasome Endopeptidase Complex, Protein Splicing, gp100 Melanoma Antigen