Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Linkage and congenic strain analyses using the nonobese diabetic (NOD) mouse as a model for human type 1 autoimmune diabetes (T1D) have identified several NOD mouse Idd (insulin dependent diabetes) loci, including Slc11a1 (formerly known as Nramp1). Genetic variants in the orthologous region encompassing SLC11A1 in human chromosome 2q35 have been reported to be associated with various immune-related diseases including T1D. Here, we have conducted association analysis of this candidate gene region, and then investigated potential correlations between the most T1D-associated variant and RNA expression of the SLC11A1 gene and its splice isoform. METHODS: Nine SNPs (rs2276631, rs2279015, rs1809231, rs1059823, rs17235409 (D543N), rs17235416 (3'UTR), rs3731865 (INT4), rs7573065 (-237 C → T) and rs4674297) were genotyped using TaqMan genotyping assays and the polymorphic promoter microsatellite (GT)n was genotyped using PCR and fragment length analysis. A maximum of 8,863 T1D British cases and 10,841 British controls, all of white European descent, were used to test association using logistic regression. A maximum of 5,696 T1D families were also tested for association using the transmission/disequilibrium test (TDT). We considered P ≤ 0.005 as evidence of association given that we tested nine variants in total. Upon identification of the most T1D-associated variant, we investigated the correlation between its genotype and SLC11A1 expression overall or with splice isoform ratio using 42 PAXgene whole blood samples from healthy donors by quantitative PCR (qPCR). RESULTS: Using the case-control collection, rs3731865 (INT4) was identified to be the variant most associated with T1D (P = 1.55 × 10-6). There was also some evidence of association at rs4674297 (P = 1.57 × 10-4). No evidence of disease association was obtained at any of the loci using the family collections (PTDT ≥ 0.13). We also did not observe a correlation between rs3731865 genotypes and SLC11A1 expression overall or with splice isoform expression. CONCLUSION: We conclude that rs3731685 (INT4) in the SLC11A1 gene may be associated with T1D susceptibility in the European ancestry population studied. We did not observe a difference in SLC11A1 expression at the RNA level based on the genotypes of rs3731865 in whole blood samples. However, a potential correlation cannot be ruled out in purified cell subsets especially monocytes or macrophages.

Original publication

DOI

10.1186/1471-2350-12-59

Type

Journal article

Journal

BMC Med Genet

Publication Date

27/04/2011

Volume

12

Keywords

Animals, Cation Transport Proteins, Diabetes Mellitus, Type 1, Disease Models, Animal, Genome-Wide Association Study, Humans, Mice, Mice, Inbred NOD, Polymerase Chain Reaction, Polymorphism, Single Nucleotide